软件工程
-
王斌武
特任副研究员
王斌武,中国科学技术大学软件学院特任副研究员,于2024年6月在中国科学技术大学人工智能与数据科学学院获得博士学位。主要研究领域包括时空数据挖掘与城市计算、图表征学习、持续学习以及大语言模型应用等。 近年来,他作为技术骨干参与了多个重要科研项目,包括中国科学院抢占科技制高点攻坚专项、国家自然科学基金重大科研仪器研制项目以及中国科学院稳定支持基础研究领域青年团队计划等。近五年来,他在人工智能领域的顶级国际学术会议和期刊(如KDD、VLDB、ICLR、WWW、AAAI、IJCAI等)上发表论文30余篇,其中以第一作者或通讯作者身份发表10余篇,研究成果在谷歌学术上的引用次数接近300次。 此外,他还多次担任ICML、NeurIPS、ICLR、KDD、AAAI、IJCAI、WWW等重要国际学术会议的程序委员会委员,并受邀担任IEEE TKDE、IEEE TITS等多个国内外知名学术期刊的审稿人。
个人主页:https://continualgoing.github.io/
主要研究方向
1. 时空数据挖掘与城市计算
2. 图表征学习
3. 持续学习和长尾学习
4. 大语言模型应用
学术论文及著作(# 通讯作者)
1、Ma, J, Wang, Wang, B. #, Zhou, Z., Wang, X., & Wang, Y#. (2025, April). BiST: An Lightweight and Efficient Bi-directional Model for Spatiotemporal Prediction. International Conference on Very Large Data Bases. VLDB 2025, CCF-A类.
2、Wang, B., Zhang, Y., Wang, X., Wang, P., Zhou, Z., Bai, L., & Wang, Y. (2023, August). Pattern expansion and consolidation on evolving graphs for continual traffic prediction. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2223-2232). KDD 2023, CCF-A类.
3、Wang, B., Ma, J., Wang, P., Wang, X., Zhang, Y., Zhou, Z., & Wang, Y. (2024, August). Stone: A spatio-temporal ood learning framework kills both spatial and temporal shifts. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 2948-2959). KDD 2024, CCF-A类.
4、Wang, B., Wang, P., Xu, W., Wang, X., Zhang, Y., Wang, K., & Wang, Y. (2024). Kill two birds with one stone: Rethinking data augmentation for deep long-tailed learning. In The Twelfth International Conference on Learning Representations. ICLR 2024, 机器学习与人工智能国际顶级会议.
5、Wang, B., Wang, P., Zhang, Y., Wang, X., Zhou, Z., Bai, L., & Wang, Y. (2024, March). Towards dynamic spatial-temporal graph learning: A decoupled perspective. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 8, pp. 9089-9097). AAAI 2024, CCF-A类.
6、Wang, B., Wang, P., Zhou, Z., Zhao, Z., Xu, W., & Wang, Y. (2024, August). Make bricks with a little straw: Large-scale spatio-temporal graph learning with restricted gpu-memory capacity. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (pp. 2388-2396). IJCAI 2024, CCF-A类.
7、Wang, B., Zhang, Y., Shi, J., et al. Knowledge expansion and consolidation for continual traffic prediction with expanding graphs. IEEE Transactions on Intelligent Transportation Systems, 24(7), 7190-7201. IEEE TITS, 中科院一区TOP期刊.
8、Wang, B. , Wang, P., Zhang, Y., Wang, X., Zhou, Z., & Wang, Y. (2024). Condition-Guided Urban Traffic Co-Prediction With Multiple Sparse Surveillance Data. IEEE Transactions on Vehicular Technology. IEEE TVT, 中科院二区TOP期刊.
9、Wang, B., Zhang, Y., Wang, P., Wang, X., Bai, L., & Wang, Y. (2023, April). A knowledge-driven memory system for traffic flow prediction. In International Conference on Database Systems for Advanced Applications (pp. 192-207). DASFAA 2023, CCF-B类.
10、Ma, J, Wang, G., Huang, S., Yang, K., Wang, B. #, Wang, P., & Wang, Y#. (2024, April). Spatiotemporal Causal Decoupling Model for Air Quality Forecasting. International Conference on Acoustics, Speech and Signal Processing. ICASSP 2025, CCF-B类.
11、Li, L., Wang, B.#, Wang, X., Wang, P. K., Zhang, Y. D., & Wang, Y#. (2024). Face Anti-Spoofing with Unknown Attacks: A Comprehensive Feature Extraction and Representation Perspective. Journal of Computer Science and Technology, 39(4), 827-840. JCST, CCF-B类.
12、Wang, X., Gu, P., Zhang, Y., Wang, B. #, Wang, P., & Wang, Y#. (2024, April). Gradient Reactivation Enhanced Causal Attention for Out-Of-Distribution Generalizable Graph Classification. In 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2024, CCF-B类.