化学/材料科学与工程
-
戴懿涛
特任研究员、博士生导师62881369
戴懿涛,男,1989年生于湖南省汨罗市。分别于2011年、2014年在大连理工大学取得精细化工学士学位和应用化学硕士学位(赵忠奎教授任导师)。于2018年4月毕业于丹麦奥胡斯大学,获得理学博士学位,博士主导师为著名表面科学专家、中国科学院外籍院士Flemming Besenbacher教授。期间曾前往中科合成油技术股份有限公司(李永旺教授任公司总裁)下设的表面科学研发中心(SynCat@Beijing,Dr. J W (Hans) Niemantsverdriet教授和许健教授任中心主任)开展合作交流项目,并在该研发中心的光电实验室(苏韧教授和温晓东教授任合作项目负责人)进行学习。2018年5月至2021年5月,在德国马普协会煤碳研究所的多相催化部门(纳米材料和催化专家Ferdi Schuth教授为主任)从事博士后研究,并获得“洪堡学者”称号。于2021年8月获中科院人才引进计划支持,加入中国科学技术大学苏州高等研究院/化学与材料科学学院。目前,已在高水平学术期刊上共发文32篇,SCI被引1000余次,H因子20(google scholar)。其中以第一作者或是通讯作者在Nat. Commun.,J. Am. Chem. Soc.,Angew. Chem. Int. Ed.和Appl. Catal., B等顶级期刊上发表学术论文,并获得过一项丹麦专利授权。于2022年受邀担任Chinese Chemical Letters《中国化学快报》等期刊的青年编委和客座主编等。2022年入选省部级创新领军人才,获姑苏创新创业领军人才计划支持,并获得2021年度苏州工业园区青年国际型学科领军人才称号。于2018年1月在第四届英国催化大会上作keynote报告,并于2021年9月在第11届国际介观结构材料研讨会(IMMS11)和2021中国化工学会年会(光催化科学与技术论坛)上作邀请报告(Invited speaker)。
多能量场纳米催化课题组(EX-nanocatalysis research group,EXNano-RG)
多能量场纳米催化课题组(EXNano-RG)创立于2021年,面向国家“碳达峰、碳中和”战略目标,以绿色制造高值有机化学品(染料、医药和高分子等前驱体及中间体)、消灭白色高分子污染物(聚苯乙烯、聚丙烯和聚氯乙烯等)为主要任务,设计开发不同能量场(光能Esolar、热能Eheat、机械能Emech及电能Eelec)下的高效多相催化系统,构建新型的多能量场耦合催化体系,实现节能减排、绿色化学和可持续发展。
多能量场纳米催化课题组(EXNano-RG)热烈欢迎拼搏向上的博士生和硕士生加盟(物理化学、材料化学、有机化学、无机化学等不同学科背景),并常年招聘潜心科研的博士后来本组工作(待遇45万/年起)。让我们一起遨游化学新世界,探索能源新利用!
电子邮箱:yitaodai@ustc.edu.cn
联系地址:中国科学技术大学苏州高等研究院亲民楼210
主要研究方向
多相催化(热、光/电和机械能等):专注高效多相纳米催化剂的设计与合成,重点攻关新型绿色、环保和经济的精细化学品合成路线,以及高分子聚合物(废塑料、旧轮胎和纤维素等)的逆向分解实现回收利用并制备高值化学品,并通过原位光谱、高时间分辨的瞬态表征等手段,深入研究多相催化体系的催化反应机理。通过精准设计、构筑相匹配的多相催化系统,原创性地将多种能量(热、光、电、和机械能等)高效率、选择性地转化为特定化学能(高值有机化学品)。
(1) 多相光催化有机合成反应,用于高端染料、氘代药物和高分子等产品前驱体/中间体的生产
(2) 多相热催化烷烃/芳烃的脱氢反应,用于大宗有机化学品的生产
(3) 多相机械催化高分子原料(废塑料PET/PE/PP、旧轮胎和纤维素等)解聚转化为高值单体产品,用于助力解决白色污染
获奖及荣誉
1. 省部级创新领军人才,2022年度
2. 姑苏创新创业领军人才计划,2022年度
3. 苏州工业园区青年国际型学科领军人才,2021年度
4. Alexander von Humboldt Fellow,德国洪堡学者,2019年
5. 大连理工大学侯毓汾奖学金,2015年
6. 大连理工大学优秀硕士论文,2014年
主要学术论文、著作和专利
学术论文
2022
1. Duan, M.; Hu, C.; Duan, D.; Chen, R.; Wang, C.; Wu, D.; Xia, T.; Liu, H.; Dai, Y.*; Long, R.*; Song, L.; Xiong, Y.*. Ppm-level Cu dopant on ultrathin Pd nanosheets/TiO2 for highly enhanced photocatalytic alcoholysis of epoxides. Appl. Catal., B. 2022, 307, 121211 (IF=24.319)
2. Dai, Y.* and Xiong, Y.*. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Research Energy, 2022, 1: e9120006 (invited Review article)
3. Xia, T.; Gong, W.; Chen, Y.; Duan, M.; Ma, J.; Cui, X.; Dai, Y.; Gao, C.;* Xiong, Y.*. Sunlight-Driven Highly Selective Catalytic Oxidation of 5-Hydroxymethylfurfural Towards Tunable Products. Angew. Chem. Int. Ed., 2022, 61, e202204225 (IF=16.823)
4. Gao, M. Y.; Bai, H.; Cui, X.;* Liu, S.; Ling, S.; Kong, T.; Bai, B.; Hu, C.; Dai, Y.; Zhao, Y.; Zhang, L.;* Zhang, J.; Xiong, Y.*. Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angew. Chem. Int. Ed., 2022, DOI: 10.1002/anie.202215540 (IF=16.823)
加入USTC建立课题组之前
1. Dai, Y., Li, C., Shen, Y., Lim, T., Xu, J., Niemantsverdriet, J. W. H., Li, Y., Besenbacher, F., Lock, N.* & Su, R.*. Light-tuned selective photosynthesis of azo-/azoxy-aromatics using graphitic C3N4. Nat. Commun., 2018, 9, 60, 1-7 (IF=17.694)
2. Dai, Y., Li, C., Shen, Y., Zhu, S., Wu, L., Xu, J., Skibsted, J., Li, Y., Niemantsverdriet, J. W. H., Besenbacher, F., Lock, N. & Su, R.*. Efficient Solar-Driven Hydrogen Transfer by Bismuth Based Photocatalyst with Engineered Basic Sites. J. Am. Chem. Soc., 2018, 140 (48), 16711-16719 (IF=16.383)
3. Dai, Y.+, Ren, P.+, Li, Y., Lv, D., Shen, Y., Li, Y., Niemantsverdriet, J. W. H., Besenbacher, F., Xiang, H., Hao, W., Lock, N., Wen, X. & Su, R.*. Solid Base Bi24O31Br10(OH)δ with Active Lattice Oxygen for the Efficient Photo-Oxidation of Primary Alcohols to Aldehydes. Angew. Chem. Int. Ed., 2019, 58 (19), 6265-6270 (IF=16.823)
4. Dai, Y., Poidevin, C., Ochoa-Hernández, C., A. Auer, A. & Tüysüz, H.*. A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C-H Bond Activation. Angew. Chem. Int. Ed. 2020, 59, 5788 (IF=16.823)
5. Dai, Y., Tüysüz, H.*. Lead-Free Cs3Bi2Br9 Perovskite as Photocatalyst for Ring-Opening Reactions of Epoxides. ChemSusChem, 2019, 12, 2587-2592 (IF=9.14)
6. Dai, Y., Tüysüz, H.*. Rapid Acidic Media Growth of Cs3Bi2Br9 Halide Perovskite Platelets for Photocatalytic Toluene Oxidation. Sol. RRL, 2021, 2100265 (IF=9.173)
7. Dai, Y., Bu, Q., Sooriyagoda, R., Pavlic, O., Lim, T., Shen, Y., Mamakhel, A., Wang, X., Li, Y., Niemantsverdriet, H., Iversen, B. B., Besenbacher, F., Xie, T., Leiw, J. P., Bristow, A. D., Lock, N. & Su, R*. Boosting Photocatalytic Hydrogen Production by Modulating Recombination Modes and Proton Adsorption Energy. J. Phys. Chem. Lett., 2019, 10 (18), 5381-5386 (IF=6.475)
8. Stegmann, N., Dai, Y., Nürenberg, E., and Schmidt, W.*. From 1D to 3D Graphitic Carbon Nitride (Melon): A Bottom-Up Route via Crystalline Microporous Templates. Inorg. Chem., 2021, 60, 24, 18957-18963 (IF=5.165)
9. Zhao, Z.*, Dai, Y., Ge, G., Guo, X. & Wang, G. Facile simultaneous defect production and O,N-doping of carbon nanotubes with unexpected catalytic performance for clean and energy-saving production of styrene. Green Chem., 2015, 17, 3723-3727. (frontispiece) (IF=11.034)
10. Zhao, Z.*, Dai, Y., Ge, G. & Wang, G. Explosive Decomposition of a Melamine-Cyanuric Acid Supramolecular Assembly for Fabricating Defect-Rich Nitrogen-Doped Carbon Nanotubes with Significantly Promoted Catalysis. Chem. Eur. J. 2015, 21, 8004- 8009. (back cover) (IF=5.236)
11. Zhao, Z.*, Dai, Y., Ge, G., Guo, X. & Wang, G. Nitrogen-doped carbon nanotube by a facile two-step approach as an efficient catalyst for ethylbenzene direct dehydrogenation. Phys. Chem. Chem. Phys., 2015, 18895-18899. (back cover) (IF=3.676)
12. Zhao, Z.*, Dai, Y., Ge, G. & Wang, G. Efficient Tuning of Microstructure and Surface Chemistry of Nanocarbon Catalysts for Ethylbenzene Direct Dehydrogenation. AIChE Journal, 2015, 2543-2561 (IF=4.167)
13. Zhao, Z.*, Dai, Y., Ge, G., Guo, X. & Wang, G. Increased active sites and their accessibility of N-doped carbon nanotube carbocatalyst with remarkably enhanced catalytic performance in direct dehydrogenation of ethylbenzene. RSC Adv., 2015, 53095-53099. (IF=3.361)
14. Zhao, Z.*, Dai, Y., A Facile Approach to Fabricate N-Doped Mesoporous Graphene/Nanodiamond Hybrid Nanocomposite with Synergistically Enhanced Catalysis. ChemCatChem, 2015, 1070-1077. (inside cover) (IF=5.686)
15. Zhao, Z.*, Dai, Y., Ge, G. & Wang, G. Guanidine Nitrate Enhanced Catalysis of Nitrogen-Doped Carbon Nanotube for Metal-Free Styrene Production via Direct Dehydrogenation. ChemCatChem, 2015, 1135-1144. (IF=5.686)
16. Zhao, Z.*, Dai, Y., & Ge, G. Nitrogen-doped nanotubes-decorated activated carbon-based hybrid nanoarchitecture as superior catalyst for direct dehydrogenation. Catal. Sci. Technol., 2015, 1548-1557. (IF=6.119)
17. Zhao, Z.*, Dai, Y., Lin, J. & Wang, G. Highly-Ordered Mesoporous Carbon Nitride with Ultrahigh Surface Area and Pore Volume as a Superior Dehydrogenation Catalyst. Chem. Mater., 2014, 26 (10), 3151-3161. (IF=10.508)
18. Zhao, Z.* & Dai, Y., Nanodiamond/carbon nitride hybrid nanoarchitecture as an efficient metal-free catalyst for oxidant- and steam-free dehydrogenation. J. Mater. Chem. A, 2014, 2, 13442-13451. (IF=14.511)
19. Zhao, Z.*, Dai, Y., Bao, T., Li, R. & Wang, G. Direct alkenylation of aromatics with phenylacetylene over supported H3PW12O40 catalysts as a clean and highly efficient approach to producing α-arylstyrenes. J. Catal., 2012, 288, 44-53. (IF=8.047)
学术专著
1. Dai, Y., Lee, J. & Tüysüz, H.《Halide Perovskites for Photonics》Book chapter 2 "Preparation and Physicochemical Properties of Nanostructured Halide Perovskites"; 美国AIP Publishing; 2021
专利
1. Dai, Y., Su, R., Besenbacher, F. & Lock, N. Photocatalytic Synthesis of Azo and/or Azoxy Compounds. Danish Patent, PA 2017 70161