化学/材料科学与工程
-
戴懿涛
特任研究员、博士生导师62881369
戴懿涛,男,1989年生于湖南省汨罗市。分别于2011年、2014年在大连理工大学取得精细化工学士学位和应用化学硕士学位(赵忠奎教授任导师)。于2018年4月毕业于丹麦奥胡斯大学,获得理学博士学位,博士主导师为著名表面科学专家、中国科学院外籍院士Flemming Besenbacher教授。期间曾前往中科合成油技术股份有限公司(李永旺教授任公司总裁)下设的表面科学研发中心(SynCat@Beijing,Dr. J W (Hans) Niemantsverdriet教授和许健教授任中心主任)开展合作交流项目,并在该研发中心的光电实验室(苏韧教授和温晓东教授任合作项目负责人)进行学习。2018年5月至2021年5月,在德国马普协会煤碳研究所的多相催化部门(纳米材料和催化专家Ferdi Schuth教授为主任)从事博士后研究,并获得“洪堡学者”称号。于2021年9月获中科院人才引进计划支持,加入中国科学技术大学苏州高等研究院/化学与材料科学学院。目前,已在高水平学术期刊上共发文50多篇,H因子25。其中以独立通讯作者或第一作者在Nat. Synth.,Nat. Commun.,J. Am. Chem. Soc.和Angew. Chem. Int. Ed.等顶级期刊上发表多篇学术论文,并获得过1项国家发明专利和1项丹麦专利授权。受邀担任Cell旗下综合国际期刊The Innovation,Chinese Chemical Letters《中国化学快报》的青年编委。2022年入选省部级创新领军人才,获姑苏创新创业领军人才计划支持,并获得2021年度苏州工业园区青年国际型学科领军人才称号。于2018年1月在第四届英国催化大会上作keynote报告,于2021年9月在第11届国际介观结构材料研讨会(IMMS11)和2021中国化工学会年会(光催化科学与技术论坛)上作邀请报告(Invited speaker),于2025年10月在第7届国际机械材料模拟大会CMMM2025上作keynote报告。于2025年获评省科学技术进步二等奖。已和国内外多家上市公司、大型央企开展过技术合作,具备工程研发基础。
同位素药物合成实验室 Isotope Pharmaceutical Synthesis Laboratory (IPS Lab)
同位素药物合成实验室(IPS Lab)创立于2022年初,面向国家“碳达峰、碳中和”战略目标,以绿色合成同位素特种化学品(同位素医药/高分子等前驱体及中间体)、资源化利用重水为主要任务,设计开发不同能量场(光能Esolar、热能Eheat、机械能Emech、生物能Ebio及电能Eelec)下的高效纳米尺度催化/生物合成系统,构建多功能精准合成体系,实现节能减排、绿色化学和可持续发展,剑指新研究方向开辟和颠覆性技术产学研。
IPS Lab热烈欢迎拼搏向上的博士生(包括工程类博士)和硕士生加盟(物理化学、材料化学、有机化学、无机化学、分子生物等不同学科背景),并常年招聘潜心科研的博士后(待遇45万/年起)。让我们一起遨游催化新世界,探索能源新利用!我们热爱科学,所以愿意一生执着科技攻关!志同道合者,不受任何杂质分子干扰,共同努力!
电子邮箱:yitaodai@ustc.edu.cn
联系地址:中国科学技术大学苏州高等研究院亲民楼210
主要研究方向:
功能催化(热、光/电、生物和机械能等):专注高效纳米催化剂及功能生物体系的设计与合成,重点攻关新型绿色、环保和经济的同位素化学品合成路线,并通过原位光谱、高时间分辨的瞬态表征等手段,深入研究催化反应机理。通过精准设计、构筑高匹配性的催化合成系统,原创性地将多种能量(光、生物、热、机械和电能等)高效率、选择性地转化为特定化学能(如同位素化学品)。
(1) 纳米光/电/热催化同位素合成反应(如重水中氢氘交换反应),用于制造氘代药物、13C/15N/18O等同位素标记产品以及高端染料和高分子等的前驱体/中间体
(2) 生物催化特种化学品合成,用于高精尖化学品的绿色合成
(3) 纳米机械催化合成同位素标记产品、高端染料和高分子等的前驱体/中间体
(4) 纳米催化烷烃/芳烃的脱氢/加氢反应,用于大宗化学品的绿色合成
获奖及荣誉:
1. 省科学技术进步二等奖,2024年度
2. 省部级创新领军人才,2022年度
3. 姑苏创新创业领军人才计划,2022年度
4. 苏州工业园区青年国际型学科领军人才,2021年度
5. Alexander von Humboldt Fellow,德国洪堡学者,2019年
6. 大连理工大学侯毓汾奖学金,2015年
7. 大连理工大学优秀硕士论文,2014年
主要学术论文、著作和专利
学术论文
2025
33. Xu, J.; Cao, R.; Yang, S.-Z.; Guo, Y.-M.; Xia, T.; Zhao, D.; Pan, T.-R.; Liew, K.M.; Besenbacher, F.; Dai, Y.-T.* Light-driven scalable deuteration of N-heteroarenes via atomically dispersed palladium. (Accepted in Principle at Nature Synthesis, 2025; posted as preprint: https://doi.org/10.21203/rs.3.rs-5527371/v1)
32. Wang, Q.#; Xia, T.#; Liew, K.M.; Besenbacher, F.; Dai, Y.-T.* Light-driven Toluene Ammoxidation via Mixture Photocatalyst of Halide Perovskite Cs3Bi2Br9 and TiO2. (Under Review at Science Advances)
31. Li, Y. J.; Tang, S. C.; Zhao, T.; Tian, J.*; He, T.; Wang, Y.; Ji, Z.; Li, Y.; Dai, Y.*; Lee, W. I.; Bahnemann, D. W.; Pan, J.* Acetaldehyde Production via Photocatalytic Heterolytic Dehydrogenation of Ethanol Accelerated by Tuning Lewis Acid-Base Pairs over CsGeX3 (X = Cl, Br, l) Halide Perovskites. ACS Sustainable Chem. Eng., 2025, https://doi.org/10.1021/acssuschemeng.5c00309
30. Tang, S.; Li, Y.; Yang, J.; Zhao, T.; Tian, J.*; Wang, Y.; Ji, Z.; Li, Y.; Dai, Y.*; He, T.; Zhang, Y.-W.; Emeline, A.; Pang, Q.; Bahnemann, D.*; Pan, J.* Perovskite CsCuClxBr3-x Microcrystals: Band Structure, Photochemical Stability, and Photocatalytic Properties. ChemSusChem, 2025, e202402094 (Invited paper for Sustainability Talents Special Collection)
29. Chang, Y.*; Cheng, Y.; Jia, R.; Wang, R.; Xu, Q.; Gong, L.; Wei, Y.; Tang, B.; Guo, C.; Sun, B.; He, X.; Li, X.; Gong, L.; Ye, H.; Wang, X.; Dai, Y.; Dong, M.; Tang, Y.*; Zhang, F.*; Tan, P.*; Pan, T.-R.* Unified iontronic sensing for operando monitoring of physical-chemical events in lithium-ion batteries. Natl. Sci. Rev., 2025, nwaf151, https://doi.org/10.1093/nsr/nwaf151
28. Gong, W.; Ma, J.; Chen, G.; Dai, Y.; Long, R.; Zhao, H.;* Xiong, Y.* Unlocking the Catalytic Potential of Heterogeneous Nonprecious Metals for Selective Hydrogenation Reactions. Chem. Soc. Rev., 2025. DOI: 10.1039/d4cs01005a.
2024
27. Zhang, W.; Yin, B.*; Akbar, A.; Li, W.; Dai, Y.; Liew, K.M*. Nano-micro pore structure characteristics of carbon black and recycled carbon fiber reinforced alkali-activated materials. npj Mater. Sustain., 2024, 2, 30
26. Liu, Q.; Xu, W.; Huang, H.; Shou, H.; Low, J.; Dai, Y.; Gong, W.; Duan, D.; Zhang, W.; Jiang, Y.; Zhang, G.; Cao, D.; Wei, K.; Long, R.;* Chen, S.; Song, L.; Xiong, Y.* Spectroscopic Visualization of Reversible Hydrogen Spillover between Palladium and Metal-Organic Frameworks toward Catalytic Semihydrogenation. Nat. Commun. 2024, 15, 2562
2023
25. Wu, Z; Tüysüz, H.; Besenbacher, F.; Dai, Y.*; Xiong, Y.*. Recent Developments in Lead-free Bismuth-based Halide Perovskite Nanomaterials for Heterogeneous Photocatalysis under Visible Light. Nanoscale, 2023,15, 5598-5622 (Invited MiniReview article as Nanoscale 2023 Emerging Investigators)
24. Wang, X.; Pan, S.; Chen, L.; Wang, L.; Dai, Y.; Luo, T.; Li, W.*. Biogenic Copper Selenide Nanoparticles for Near-Infrared Photothermal Therapy Application. ACS Appl. Mater. Interfaces, 2023, 15, 23, 27638-27646
2022
23. Duan, M.; Hu, C.; Duan, D.; Chen, R.; Wang, C.; Wu, D.; Xia, T.; Liu, H.; Dai, Y.*; Long, R.*; Song, L.; Xiong, Y.*. Ppm-level Cu dopant on ultrathin Pd nanosheets/TiO2 for highly enhanced photocatalytic alcoholysis of epoxides. Appl. Catal., B. 2022, 307, 121211
22. Dai, Y.* and Xiong, Y.*. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Research Energy, 2022, 1: e9120006 (invited Review article)
21. Xia, T.; Gong, W.; Chen, Y.; Duan, M.; Ma, J.; Cui, X.; Dai, Y.; Gao, C.;* Xiong, Y.*. Sunlight-Driven Highly Selective Catalytic Oxidation of 5-Hydroxymethylfurfural Towards Tunable Products. Angew. Chem. Int. Ed., 2022, 61, e202204225
20. Gao, M. Y.; Bai, H.; Cui, X.;* Liu, S.; Ling, S.; Kong, T.; Bai, B.; Hu, C.; Dai, Y.; Zhao, Y.; Zhang, L.;* Zhang, J.; Xiong, Y.*. Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angew. Chem. Int. Ed., 2022, 134, e202215540
加入USTC建立课题组之前
1. Dai, Y., Li, C., Shen, Y., Lim, T., Xu, J., Niemantsverdriet, J. W. H., Li, Y., Besenbacher, F., Lock, N.* & Su, R.*. Light-tuned selective photosynthesis of azo-/azoxy-aromatics using graphitic C3N4. Nat. Commun., 2018, 9, 60, 1-7 (IF=17.694)
2. Dai, Y., Li, C., Shen, Y., Zhu, S., Wu, L., Xu, J., Skibsted, J., Li, Y., Niemantsverdriet, J. W. H., Besenbacher, F., Lock, N. & Su, R.*. Efficient Solar-Driven Hydrogen Transfer by Bismuth Based Photocatalyst with Engineered Basic Sites. J. Am. Chem. Soc., 2018, 140 (48), 16711-16719 (IF=16.383)
3. Dai, Y.+, Ren, P.+, Li, Y., Lv, D., Shen, Y., Li, Y., Niemantsverdriet, J. W. H., Besenbacher, F., Xiang, H., Hao, W., Lock, N., Wen, X. & Su, R.*. Solid Base Bi24O31Br10(OH)δ with Active Lattice Oxygen for the Efficient Photo-Oxidation of Primary Alcohols to Aldehydes. Angew. Chem. Int. Ed., 2019, 58 (19), 6265-6270 (IF=16.823)
4. Dai, Y., Poidevin, C., Ochoa-Hernández, C., A. Auer, A. & Tüysüz, H.*. A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C-H Bond Activation. Angew. Chem. Int. Ed. 2020, 59, 5788 (IF=16.823)
5. Dai, Y., Tüysüz, H.*. Lead-Free Cs3Bi2Br9 Perovskite as Photocatalyst for Ring-Opening Reactions of Epoxides. ChemSusChem, 2019, 12, 2587-2592 (IF=9.14)
6. Dai, Y., Tüysüz, H.*. Rapid Acidic Media Growth of Cs3Bi2Br9 Halide Perovskite Platelets for Photocatalytic Toluene Oxidation. Sol. RRL, 2021, 2100265 (IF=9.173)
7. Dai, Y., Bu, Q., Sooriyagoda, R., Pavlic, O., Lim, T., Shen, Y., Mamakhel, A., Wang, X., Li, Y., Niemantsverdriet, H., Iversen, B. B., Besenbacher, F., Xie, T., Leiw, J. P., Bristow, A. D., Lock, N. & Su, R*. Boosting Photocatalytic Hydrogen Production by Modulating Recombination Modes and Proton Adsorption Energy. J. Phys. Chem. Lett., 2019, 10 (18), 5381-5386 (IF=6.475)
8. Stegmann, N., Dai, Y., Nürenberg, E., and Schmidt, W.*. From 1D to 3D Graphitic Carbon Nitride (Melon): A Bottom-Up Route via Crystalline Microporous Templates. Inorg. Chem., 2021, 60, 24, 18957-18963 (IF=5.165)
9. Zhao, Z.*, Dai, Y., Ge, G., Guo, X. & Wang, G. Facile simultaneous defect production and O,N-doping of carbon nanotubes with unexpected catalytic performance for clean and energy-saving production of styrene. Green Chem., 2015, 17, 3723-3727. (frontispiece) (IF=11.034)
10. Zhao, Z.*, Dai, Y., Ge, G. & Wang, G. Explosive Decomposition of a Melamine-Cyanuric Acid Supramolecular Assembly for Fabricating Defect-Rich Nitrogen-Doped Carbon Nanotubes with Significantly Promoted Catalysis. Chem. Eur. J. 2015, 21, 8004- 8009. (back cover) (IF=5.236)
11. Zhao, Z.*, Dai, Y., Ge, G., Guo, X. & Wang, G. Nitrogen-doped carbon nanotube by a facile two-step approach as an efficient catalyst for ethylbenzene direct dehydrogenation. Phys. Chem. Chem. Phys., 2015, 18895-18899. (back cover) (IF=3.676)
12. Zhao, Z.*, Dai, Y., Ge, G. & Wang, G. Efficient Tuning of Microstructure and Surface Chemistry of Nanocarbon Catalysts for Ethylbenzene Direct Dehydrogenation. AIChE Journal, 2015, 2543-2561 (IF=4.167)
13. Zhao, Z.*, Dai, Y., Ge, G., Guo, X. & Wang, G. Increased active sites and their accessibility of N-doped carbon nanotube carbocatalyst with remarkably enhanced catalytic performance in direct dehydrogenation of ethylbenzene. RSC Adv., 2015, 53095-53099. (IF=3.361)
14. Zhao, Z.*, Dai, Y., A Facile Approach to Fabricate N-Doped Mesoporous Graphene/Nanodiamond Hybrid Nanocomposite with Synergistically Enhanced Catalysis. ChemCatChem, 2015, 1070-1077. (inside cover) (IF=5.686)
15. Zhao, Z.*, Dai, Y., Ge, G. & Wang, G. Guanidine Nitrate Enhanced Catalysis of Nitrogen-Doped Carbon Nanotube for Metal-Free Styrene Production via Direct Dehydrogenation. ChemCatChem, 2015, 1135-1144. (IF=5.686)
16. Zhao, Z.*, Dai, Y., & Ge, G. Nitrogen-doped nanotubes-decorated activated carbon-based hybrid nanoarchitecture as superior catalyst for direct dehydrogenation. Catal. Sci. Technol., 2015, 1548-1557. (IF=6.119)
17. Zhao, Z.*, Dai, Y., Lin, J. & Wang, G. Highly-Ordered Mesoporous Carbon Nitride with Ultrahigh Surface Area and Pore Volume as a Superior Dehydrogenation Catalyst. Chem. Mater., 2014, 26 (10), 3151-3161. (IF=10.508)
18. Zhao, Z.* & Dai, Y., Nanodiamond/carbon nitride hybrid nanoarchitecture as an efficient metal-free catalyst for oxidant- and steam-free dehydrogenation. J. Mater. Chem. A, 2014, 2, 13442-13451. (IF=14.511)
19. Zhao, Z.*, Dai, Y., Bao, T., Li, R. & Wang, G. Direct alkenylation of aromatics with phenylacetylene over supported H3PW12O40 catalysts as a clean and highly efficient approach to producing α-arylstyrenes. J. Catal., 2012, 288, 44-53. (IF=8.047)
学术专著
1. Dai, Y., Lee, J. & Tüysüz, H.《Halide Perovskites for Photonics》Book chapter 2 "Preparation and Physicochemical Properties of Nanostructured Halide Perovskites"; 美国AIP Publishing; 2021
国家发明专利
1. 一种光催化制备苄位氘代化学品的方法及氘代化学品。
戴懿涛,吴泽宏,熊宇杰。专利号:ZL 202310610939.9;授权时间:2025.08.01
丹麦专利
Dai, Y., Su, R., Besenbacher, F. & Lock, N. Photocatalytic Synthesis of Azo and/or Azoxy Compounds. Danish Patent, PA 2017 70161