软件工程
-
王鹏焜
特任副研究员
王鹏焜,中国科大软件学院特任副研究员,硕士生导师。2017年本科毕业于吉林大学软件学院,2023年博士毕业于中国科学技术大学大数据学院。主要研究方向为数据挖掘、开放环境机器学习、AI4Science等,致力于提升深度学习模型的泛化性与鲁棒性,并应用于交叉学科(城市科学、化学材料)等开放场景,推动深度学习模型快速落地。近年来主持中国科学技术大学软件学院青年创新基金项目一项,作为技术骨干参与包括中国科学院抢占科技制高点攻坚专项、国家自然科学基金国家重大科研仪器研制项、中国科学院稳定支持基础研究领域青年团队计划等在内的多个项目。近五年来在包括人工智能领域的顶级国际学术会议/期刊IEEE TKDE、ICML、ICLR、WWW、AAAI、IJCAI、KDD 等在内的高水平国际会议和期刊上发表论文30余篇,其中以第一/通讯作者身份发表10余篇。多次担任ICML、NeurIPS、ICLR、KDD、AAAI、IJCAI、WWW等重要国际学术会议程序委员,担任Scientific Reports、Cluster Computing等多个国内外学术刊物审稿人。
电子邮箱:
pengkun@ustc.edu.cn
联系地址:
江苏省苏州市工业园区若水路99号中国科学技术大学苏州高等研究院绍钧楼307
个人主页:
http://home.ustc.edu.cn/~pengkun/
主要研究方向
开放环境数据挖掘和模型泛化
- 非理想数据分布:不平衡/长尾学习和分布外(OOD)泛化
- 动态数据分布:持续学习
- 稀疏数据分布:可解释的数据增强
- 可变学习目标:多目标优化
泛化AI4Science
- 城市交通:时空数据挖掘
- 化学材料:谱-效关系学习
- 半导体:智能电子设计自动化
学术论文及著作
[1] [ICML 2024] Zhe Zhao, Pengkun Wang*, Haibin Wen, Wei Xu, Lai Song, Qingfu Zhang, Yang Wang*, Two Fists, One Heart: Multi-Objective Optimization Based Strategy Fusion for Long-tailed Learning, International Conference on Machine Learning, 2024. (CCF-A)
[2] [IJCAI 2024] Binwu Wang, Pengkun Wang*, Zhengyang Zhou, Zhe Zhao, Wei Xu, Yang Wang*, Make Bricks With A Little Straw: Large-Scale Spatio-temporal Graph Learning with Restricted GPU-Memory Capacity, International Joint Conference on Artificial Intelligence, 2024. (CCF-A)
[3] [WWW 2024] Wei Xu, Pengkun Wang*, Zhe Zhao, Binwu Wang, Xu Wang, Yang Wang*, When Imbalance Meets Imbalance: Structure-driven Learning for Imbalanced Graph Classification, The Web Conference, 2024. (CCF-A)
[4] [ICLR 2024] Binwu Wang, Pengkun Wang*, Wei Xu, Xu Wang, Yudong Zhang, Kun Wang, Yang Wang*, Kill Two Birds with One Stone: Rethinking Data Augmentation for Deep Long-tailed Learning, International Conference on Learning Representations, 2024. (清华-A)
[5] [AAAI 2024] Zhe Zhao, Pengkun Wang*, Haibin Wen, Yudong Zhang, Zhengyang Zhou, Yang Wang*, A Twist for Graph Classification: Optimizing Causal Information Flow in Graph Neural Networks, AAAI Conference on Artificial Intelligence, 2024. (CCF-A)
[6] [AAAI 2024] Binwu Wang, Pengkun Wang*, Yudong Zhang, Xu Wang, Zhengyang Zhou, Lei Bai, Yang Wang*, Towards Dynamic Spatial-Temporal Graph Learning: A Decoupled Perspective, AAAI Conference on Artificial Intelligence, 2024. (CCF-A)
[7] [ICASSP 2024] Zhe Zhao, Pengkun Wang*, Haibin Wen, Yudong Zhang, Binwu Wang, Yang Wang*, Graph Networks Stand Strong: Enhancing Robustness via Stability Constraints, IEEE International Conference on Acoustics, Speech and Signal Processing, 2024. (CCF-B)
[8] [IEEE TVT] Binwu Wang, Pengkun Wang*, Yudong Zhang, Xu Wang, Zhengyang Zhou, Yang Wang*, Condition-Guided Urban Traffic Co-Prediction with Multiple Sparse Urban Data, IEEE Transactions on Vehicular Technology, 2024. (JCR一区/Top)
[9] [IEEE TKDE] Pengkun Wang, Chuancai Ge, Zhengyang Zhou, Xu Wang, Yuantao Li, Yang Wang*, Joint Gated Co-attention Based Multi-modal Networks for Subregion House Price Prediction, IEEE Transactions on Knowledge and Data Engineering, 2023, 35(02): 1667-1680. (CCF-A)
[10] [DASFAA 2023] Pengkun Wang, Xu Wang, Binwu Wang, Yudong Zhang, Lei Bai*, Yang Wang*, Long-tailed Time Series Classification via Feature Space Rebalancing, The International Conference on Database Systems for Advanced Applications, 2023. (CCF-B)
[11] [ICASSP 2023] Yudong Zhang, Wei Lu, Xu Wang, Pengkun Wang*, Yang Wang*, Pondering about Task Spatial Misalignment: Classification-Localization Equilibrated Object Detection, IEEE International Conference on Acoustics, Speech and Signal Processing, 2023. (CCF-B)
[12] [IEEE TVT] Pengkun Wang, Chaochao Zhu, Xu Wang, Zhengyang Zhou, Guang Wang, Yang Wang*, Inferring Intersection Traffic Patterns with Sparse Video Surveillance Information: An ST-GAN Method, IEEE Transactions on Vehicular Technology, 2022. (JCR一区/Top)
[13] [ICDM 2022] Pengkun Wang, Xu Wang, Binwu Wang, Yudong Zhang, Lei Bai*, Yang Wang*, Countering Modal Redundancy and Heterogeneity: A Self-Correcting Multimodal Fusion, IEEE International Conference on Data Mining, 2022. (CCF-B)